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An Algorithm for the Treatment of Curved
Metallic Laminas in the Finite Difference
Time Domain Method

C.J. Railton

Abstract—The Finite Difference Time Domain (FDTD) method,
implemented in Cartesian coordinates, is well proven as an
efficient technique for the electromagnetic analysis of a wide
variety of microwave structures. The standard FDTD method
is, however, less efficient if the structure under investigation
has boundaries which are not parallel to the coordinate axes.
Techniques designed to overcome this problem such as locally or
globally deformed grids, or the use of nonorthogonal coordinate
systems have been reported but these impose a penalty in compu-
tational effort or in flexibility. In this contribution, an alternative
technique is described whereby the standard Cartesian grid is
maintained, and the existence of the material boundaries is
accounted for by the use of special finite difference equations
for the affected nodes. These equations take account not only of
the position of the boundaries but also of the asymptotic field
behavior in their vicinity. This technique results in a flexible,
accurate, and efficient, implementation which is applicable to a
wide range of MMIC and antenna structures.

I. INTRODUCTION

ANY STRUCTURES such as printed antennas [1],

circuit elements [2], [3], and scatterers for which elec-
tromagnetic analysis is desired contain metal boundaries which
can not all be made parallel to a set of Cartesian or other
orthogonal coordinate axes. Whereas the standard Finite Dif-
ference time Domain (FDTD) technique is well proven as
an efficient method of analyzing structures whose bound-
aries are all parallel to the coordinate axes, the accuracy
and efficiency deteriorates if the structure under investigation
contains boundaries at arbitrary angles. Several methods have
been proposed in the literature to overcome this problem, the
simplest being to resort to the use of a very fine mesh [2].
This approach, however, is likely to yield a computationally
inefficient solution to the problem and often leads to a formu-
lation which does not converge to the correct answer no matter
how fine a mesh is used [4]. More sophisticated solutions
include the use of “deformed” grids in the neighborhood of
the material boundary. Here the Cartesian mesh is retained
over the majority of the problem space but, in the vicinity
of material boundaries, it is made to conform to them. This
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approach has been successfully used in [5] for the analysis
of scattering from a smooth surface. As an alternative, several
researchers have investigated the use of conformal grids which
use nonorthogonal coordinate systems [6]—[9]. While good
results have been obtained using this method, the computation
time is stated to be much longer (of the order of 3 times)
than the equivalent algorithm using Cartesian coordinates. In
addition there is the associated problem of generating a suit-
able nonorthogonal mesh which is, in itself, a difficult process.
A combination of Cartesian and Cylindrical coordinates has
been used for the analysis of coaxial waveguide structures
in [10}, and this treatment is one of the few in which the
singular field behavior is accounted for. In this contribution,
a different approach is described in which the Cartesian grid
with its inherent efficiency and simplicity is maintained, but in
which use is made of special Finite Difference (FD) equations
in the vicinity of material boundaries. Special algorithms
for electrically small structures have been previously used
with success in the cases of slots [11], [12], and wires
[13]. The analysis of irregularly shaped planar structures has
also been addressed in a two-dimensional formulation [14].
Recently, we have demonstrated the incorporation of static
field solutions into the FDTD algorithm, which include the
effects of the singularities in the field distribution, in order to
analyze isolated edges [15] and narrow microstrip where the
edges are closer than or comparable to the mesh size [16]. A
major advantage of this scheme over the use of nonorthogonal
coordinate systems is that the amount of extra computer time
required is very small. Moreover, this small penalty is amply
compensated by the ability to reduce the density of the mesh
while maintaining accuracy. In addition, the generation of the
FD equations is an easily automated process which does not
introduce the difficulties associated with the generation of a
nonorthogonal mesh. This work is now extended to the use
of static solutions for the case of metal laminas with curved
boundaries such as are often found in microstrip circuits
and antennas. The approach is more flexible than the grid
deformation approach and, in addition, the field behavior in
the region of edges and corners is automatically included. Thus
the unit cell size need to be chosen only by consideration of
the wavelengths of interest and not be constrained by the size
or position of the laminas. This greatly eases the process of
mesh generation and leads to a more computationally efficient
formulation. The technique may readily be extended to solid
objects and objects with edges, corners, or points.
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Fig. 1. FDTD grid for calculation of E,, E,, and Hy.

II. DEFINITION OF THE MATERIAL BOUNDARY

In Fig. 1, we see the edge of a curved metal lamina lying in
the x—z plane which cuts the FDTD mesh. Following standard
practice, in order to calculate the new value of the H, nodes
we need the surface integral of H, and the line integrals of
E, and E,. If we approximate the edge cutting the mesh by
a straight line which makes an angle # with the z axis we
can make use of the known assymptotic forms of the field
components tangential and normal to the edge, in order to
evaluate the integrals. Thus, we may calculate the coefficients
of the FDTD equations which will be functions of both the
position of the edge and the angle of the target to the edge.

We define a curved planar lumina by the following
functions:

1) Normaldist (x, z): returns length of the normal from the
point (z, z) to the edge of the lamina projected into the plane
of the metal.

2) Tangendist (x, z): returns distance along the edge of the
intersection of the normal from the point (z, z) with the lamina
with respect to a suitable origin.

3) Tangentangle (x): returns the angle of the tangent to the
lamina at point x.

4) Inside (z,y,z): true if the point (z,y,z) lies on the
lamina or false otherwise.

As an example, consider a disk of infinitesimal thickness
whose centre is at coordinates (zo,yo,20) and of radius a.
The functions for this case are given by (1).

Normaldist (z,2) = \/(x —z0) 4+ (z-2) —a

Tangentangle = :I:Sin_l( E—_aﬂ)-)

Inside = ((z — 20)? + (# — 20)? < a?) A (y = wo) .

M

III. THE CALCULATION OF 9H,/dt
IN THE PLANE OF THE METAL

Depending on the relative position of the edge of the lamina
and the grid, a number of different cases must be identified and
dealt with. We consider all H, nodes whose associated surface
of integration intersects the metal lamina as requiring special
treatment. Two different cases within this category are then
identified, depending on whether the H,, node is on the metal
or not. These cases are shown in Fig. 1. In the latter case, the
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only action which need be taken is to set the H, node to zero.
For the former case and referring to Fig. 1, we see that there
can never be less than two (or more than four) E field nodes
outside the metal. From the magnitude of the E field at these
nodes we estimate the magnitudes of the components of the
FE field normal and tangential to the metal edge.

Denoting the component of the E field tangential to the edge
as Er and the component normal to the edge and in the plane
of the metal as E, we expand the field function as follows:

ET(n) = klnPET(n) + kzPET(n) (2)
EN(’IL, t) = k3tPEN(’n) + k4PEN(n) 3)

where n is the length of the normal to the edge of the metal
defined by the function Normaldist (z, ) and ¢ is the tangential
distance along the edge referred to a suitable origin. It is noted
that the values of » and ¢ are independent of the value of .
The functions Pry and Pgp are the static F field functions
associated with a metal edge. They are given by consideration
of the Green’s function for a slab loaded waveguide and the
well used approximation to the current distribution across a
microstrip line as carried out in [17]. If we consider distances
from the edge which are electrically small, which an FDTD
cell must be, the field distribution is independent of frequency.
Under these conditions, it has been found that the assymptotic
form of the field pattern, denoted E°° in [17], is a good
approximation to the actual field distribution. Since, at this
stage, we are concerned only with the fields in the plane of
the metal, we set y to zero.

(e
Pen =1 <\/u2+(j(n+u)+y)2> 4
Pgpr =
u u
Re<\/;LOg<y+j(n+u)+\/u2+(j(n+u)+y)2>>
)

where, if the edge is a part of a strip, the parameter u is
its half width. For other cases, such as a large or irregularly
shaped patch where a width is not simply defined, we let u
approach infinity yielding equations (6) and (7) which express
the well-known asymptotic field behavior near a single edge.

Pgy = Im( -—-—j_,_yl_ n) ©]
Pgr = Rey/n - jy. (M

The Cartesian components of the fields are then expressed as

E,=FEpr Cosf— EnNSind ®)
E,=ErSinf+ Ey Cos 6 ©)]
We can then express the magnitudes of the fields at each
node on the integration surface in terms of the normal and
tangential components as follows:
E,q = klnszT(nz) Cos 6 + kQPET(nz) Cos 8
- kthPEN(’/LQ) Sin 6 — k4PEN(n2) Sin 8 (10)
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By = k1n4PET(n4) Cos 0 + kzPET(TL4) Cos 8§

- k3t4PEN(n4) Sin 8 — k4PEN(n4) Sin 6 (11)

FEq= klanET(nl) Sin 0 + kzPET(nl) Sin 6

+ kgthEN(’nl) Cos 6 + k4PEN(7L1) Cos 8 (12) /

B, = k1n3PET(n3) Sin 6 + kzPET(ng) Sin 8
+ kst3Pen(ns) Cos 0 + ks Pen(ns) Cos 6 (13)

where the subscripts refer tp the positions of the nodes and the
corners of the integration surface as shown by the numbers in
brackets in Fig. 1.

For the nodes which are on the metal, the associated
equations degenerate to the trivial case of zero = zero.

Since we have four unknowns and may have as few as two
nontrivial equations, we must assume some of the k’s to be
zero. To maintain congruence with the basic FDTD algorithm
we do so as follows: if we have three nodes we set k; to zero,
if we have two nodes then we set k; and ks to zero.

Equations (10)—(13) can be expressed in matrix form as
follows:

k=

(1>

E (14)

where the matrix A is given by (15) below. And the vectors
k and E are glVCIl by(k1k2k3k4) and (EmlEszzlEzz)
respectively.

If some of the nodes lie on the metal then the corresponding
rows and columns of the matrix are removed. For example, if
three nodes on the surface of integration are outside the metal
then we have a set of linear equations which relate ko, k3, and
k4 to the values of the E field nodes such as those shown
in (16). ‘

PET('I‘L4) COS 0 —t4PEN(n4) Sin 6
PET(nl) Sin 6 t1PEN('n1) Cos 8
PET(’ng) Sin ] tsPEN(’ng) Cos 8

—PEN(TL4) Sin 8
PEN(nl) Cos 6
PEN('ng) Cos 6

k2 Ea:Z
Aks]|=1|Ea .

k4 EzZ
(16)

The line and surface integrals which we need in order to
get the coefficients for the FDTD equation as shown in (17)

1431

to (19).

/Em dz = k1Cos H/nPET(n) dz + koCos H/PET(n) dx

- k3 Sin H/tPEN(n) dz — k4 Sin 0/PEN(n) dz
@17

E.dz=k{Sin @ / nPgr(n)dz + ko Sin § / Prr(n)dz
+ k3 Cos H/tPEN(n) dz + k4 Cos H/PEN('n) dz

(18)

Hyl ff PHy(’n) dx dz
Py (ns)

/ Hydxdz =

where the function Pgy(n) is the asymptotic behavior of the
V2u

H, field given by
PHY =Im 5 . (20)
Vo2 + (G(n+ ) + )

Making use of (17)-(19) the integral form of the FDTD
equation can be expressed as (21) or in matrix form as (22)
wherg the vector b is made up of the coefficients of k in (21)

8H, 1
ot PHY ’I’L5)

(19)

/ /J,PHY d.'I} dz

z2

= ko Cos 0(/ PET(x’y’ Zl) dz — /
z1 z1

2
+ k4 Cos 9(/ n(x,y, z21)Per(®,y, 21) do
zl
z2
-/,

zl x2
— k4 Sin 0(/ Pen(z,y,21)dz — / Pen(z,y,22) dw)

Per(z,y,22) dm)

n(z,y, z2)Per(z,y, 22) dm)

1 zl

z2
— k3 Sin 9(/ t(z,y,21)Pen(z,y, 21) dz
xl

z2
—/ t(%y,m)PEN(zc,y,zQ)dm)
zl

z2 z2
— ko Sin 9(/ Per(z1,y,2)dz — / Per(z2,y,2) dz)
z z1

1

naPrpr(ng) Cos 6
n4PET(n4) Cos 6
TL1PET(TL1) Sin 6
ngPET(n3) Sin @

PET(’ng) Cos 8
PET(’I’L4) Cos 6
PET(nl) Sin 6
PET('I‘Lg) Sin 6

—toPpn(ng) Sin 6
——t4PEN(n4) Sin #
thEN(nl) Cos 6
t3Pen(ns) Cos 0

—PEN(’I'LQ) Sin 6
—PEN(n4) Sin ¢
PEN(nl) Cos 8
PEN(’I’L3) Cos 6

(15)
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z2
— ky Sin 0</ n(z1,y, 2)Per(z1,y, 2) d=
z1

22
—/ n(mz,y,Z)PET(%,yaz)dZ)

1

z2 z2
— k4 Cos 0(/ Ppn(z1,y,2) dz — / Pgn(z2,9,2) dz)
z1 z1
22
— k3 Cos 6(/ t(z1,y,2)Pen(x1,y,2) dz
zl

z2
—/ t(xz,y,z)PEN(xg,y,z)dz> 21

1

0H,,
ot

Combining (14) and (22), we get the required equation for
updating the H,1 node value:

OH yl —I\T
o= (47 TbE.
In general, the matrix A and the vector b are of order n where
7 is the number of E field nodes on the surface of integration
and which are not on the metal surface. The elements of the
matrix (A™1)Th are calculated during the setting up stage so
that the time required by the main iteration algorithm is not
increased.

It is noted that, in the absence of a metal edge, the matrix
reduces to (24) which corresponds to the standard FDTD
equation

bk =

22

(23)

(24)

In Figs. 2, 3, and 4 examples are shown of the coefficients
of the special FDTD equations for a situation similar to that
shown in Fig. 1 for the case of an edge making an angle &
to the z axis and which passes through the point (0.5 o).
The mesh size is set to unity in each direction. The situation
for § = 0, is equivalent to the case treated in [15] and the
coefficients for the nonzero nodes are equal to the “correction
factors” used there. It can be seen that the coefficients are
different when the edge is sloping. The discontinuities which
appear in Fig. 2 and Fig. 3 occur at the point where the edge
intersects the F.o node.

IV. THE CALCULATION OF 0F, /3t AND
O0E,/0t—CasE 1, H,; OUTSIDE THE METAL

When the metal edge is not parallel to the coordinate axes,
the FDTD equations for £, and E, are not independent and
must be taken together. A way of doing this is to consider a
cross which is centered on the H, node as shown in Fig. 1. In
this case, we wish to use special FD equations for whichever
of the nodes F,1 FE,2F,1 and E,5 are not inside the metal. We
make use of (14) in order to relate the values of the vector k
for the surface under consideration to the nodes E 1 FE2F,
and F,9 nodes which are outside the metal region. We also
require extra parameters h; — hg which are defined in terms
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Fig. 2. Calculation of 8H, /0t - coefficient for the E, node.
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Fig. 4. Calculation of 9H, /9t - coefficient for the F,2 node.

of the H field in the planes above and below the plane of the
metal. First, we make the following definitions:

V2u
o + (it )+ 9)?

T =
Im(, / %Log i

y+i(n+ )+ \fu? + (o + u) +y)?
(26)

PHN = Re

(25)
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PEY = Re

2 )
V2 + (i(n+u) +y)°

where Pgp is proportional to the component of the H field
normal to the edge and Py is proportional to the component
tangential to the edge. We then expand the H field components
normal and tangential to the edge and in the plane half a unit
cell above the plane of the metal as:

HT(n) = hlnPHT(n) + thHT(n) (28)

HN(n,t) = hgtPHN(n) -+ h4PHN(n) .

The Cartesian components of the H field above and below the
plane of metallization are then expressed as:

Hx(yl) = hln(yl)PHT Cos 6 + thHT(yl) Cos 8
— h3tPHN(y1) Sin 8 — h4PHN(y1) Sin 6(30)

(29)

Hz(yl) = hlnPHT(yl) Sin ¢ + hQPHT(yl) Sin 6
+ h3tPrn(y1) Cos 0 + haPuan{(y1) Cos 8

(31)
H,(y—1) = hsn(y—1)Pur Cos 6 + he Pyr(y—-1) Cos ¢
- h7tPHN(y_1) Sin 6 — thHN(y_l) Sin 6 (32)
Hz(y—l) = h57LPHT(y._1) Sin 6§ + hBPHT(y—l) Sin 8

+h7tPHN(y_1) Cos 0 + thHN(y_l) Cos 6 (33)

where the plane y = y; is half a unit cell above the plane of
the metallization.

Using (30)—(33), we can express the values of the H field
nodes as follows:

H=Fh (34)

where H = (Hml(yl)Hmz(yl)Hzl(yl)sz(yl)Hml(y—l)H
(y—1)H,1(y_1)H.2(y-1))T, h is the vector made up of hy —
hs and the matrix F are the coefficients of h taken from
equations (30) to (33). The nodes H1, etc., are directly above
and below the nodes F.; etc.

We now require the integrals given by (35) to (38) from
which we can express the FDTD equations for E, and E,
nodes

//Em dy dz =k, Cos 0//nPET dydz

+ ko Cos 9//PETdydz—k3 Sin 8

~//tPENdydz—k4 SII’IG//PENdde

(35

II"q
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@7 //E'z dydz = kq SlnH//nPETdydz

+ ko SinH//PETdydz—{-kg Cos 0

//tPENndydz+k4 COS&//PENdde

(36)

/deiﬂ‘—‘ hy CosH/nPHTdm+h2 Cos 0/PHTd;U

—hg Slnﬂ/tPHNdx—h481n9/PHNdm
37)

/szz:hl Sin@/nPHsz+h2 SinH/PHsz
+ hs COSH/tPHNdZ+h4COSQ/PHNdZ.
(38)

The FDTD equations for 0E,2/8t and OE.1/0t are given by
(39) and (40). Similar equations may be written down for the
other two nodes

211 pyl
akl / / e(y, 2)nPgr dy dz

z11 yl
+Cos 0 / /
ot J.s Jy-1

- €(y, 2)Per dy dz
211 yl
_gin g% / / e(y, 2)tPn dy dz

z11
— Sin 8k4/ /
y—1

- €(y, 2)Pen dy dz

H, /yl
—y Pgy d
P Y(ns) - HY Y

z11
+ Sin 6<h1 / nPyr(z,y1,2) dz
25

z11
— h5/ nPgr(z,y-1,%) dz)
z

= y35y +

5

z11
+ Cos 0<h3/ Mz, y1,2)Puan(z,y1,2) dz
z5

z11
- h7/ t(z,y-1,2)Pan(2,y-1,2) dz)
z

5

211
+Sln 0<h2/ dZPHT(xaylaz)
25

z11
— hg/ dz PHT(m,y_l,z)>

5
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z11
+ Co sﬁ<h4/ Pun(z,41,2)dz
z5
z11
— hg/ Pyn(z,y-1,2)dz | (39)
25
x5 yl
Sin p2F1 / / e(z,y)nPpr dy dz
ot Jp2

yl
+ Sin 08k2 / / e(z,y)Per dy dz
z1 -1

y
+ Cos 98k3 / / e(z, y)tPen dy dz
z12 Jy~

yl
+COS0%-/ / e(z,y)Pen dy dx
xl "

H,
by — ——y——-/ Pygy d
v2%y Puy(ns) Jy—1 HY @Y

x5
+ Cos H(hl/ nPyr(z,y1,2) dx
z12

b
—hs / nPyr(z,y-1,2) d$>

12

x5
— Sin 9<h3/ t(z,y1,2)Pun(z,y1,2) dx

12

b
- h7/ t(z,y-1,2)Pan(2,y-1,2) dﬂ?)

12

x5
+ Cos 6 h2/ dz Pur(z,y1,%)
z12

xb
— hg / dz Pyr(z,y_1, z)>
12

x5
— Sin 9<h4/ Pyn(z,y1,2)dx
12

x5
- hg/ PHN(.’IZ,y_1,Z) d.’ll') .
z12

We may express these equations in matrix form as follows:
8
(41

where the matrix C is made up of the coefficients of 0k /o,
the matrix D are the coefficients of the H, nodes, the matrix
G are the coefficients of b in (39), etc. In general, matrix C
is of order (n X n), matrix D is of order (n x n) + 1) and
matrix G is of order (n x 8) where n is the number of F field
nodes outside the metal.

Since the H, nodes other than H; are farther from the edge
of the metal, we make the usual FDTD approximation that the
value of H, varies linearly over the limits of integration.

Substituting from (14) and (34), we get the desired special
FDTD equation for updating the E field nodes in the vector
E as follows:

oE
ot

(40)

ég_ (DH 42)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 8, AUGUST 1993

V. THE CALCULATIONS OF OE, /0t AND
OF,/8t—CASE 2 H,; ON THE METAL

The previous section makes the assumption that the Hy;
node is outside the metal. If this is not the case, and this node
is zero, then we need to calculate the F 5 and E,; nodes
making use of neighboring E nodes rather than the standard
FDTD technique of using the surrounding H nodes.

For the calculation of E.s, we consider the surface which
contains the F,» node but does not intersect the metal. In other
words, the surface containing E,2F,3FE,3 and E,4. We can
write down the following equations:

E.3= kQPET(nlo) Cos 8 — k3t10PEN(n10) Sin 6

- k4PEN(n10) Sin 6 (43)
Emz = kzPET(n4) Cos 8 — k3t4PEN(n4) Sin
—_ k4PEN (n4) Sin 4 (44)
E.3= kuPET(m) Sin 0 + k3t11PEN(n11) Cos 6
+ k4PEN(n11) Cos 8 (45)
E,4= kzPET(’ng) Sin 6 + kgtgPEN(ng) Cos 6
+ k4PEN(n9) Cos 9 . (46)

We make use of the known values of F 3 F.3 and F,4 in order
to calculate the values of ko — k4. We then use equation (44)
to calculate the value of F,o. A similar procedure is used to
calculate the value of F,;. It is noted that, for edges parallel
to the axis, this approach reduces to that used successfully
in [16].

VI. CALCULATIONS OF 0H, /8t AND OH /0t ABOVE AND
BELOW THE PLANE OF THE METAL

Since the nodes H, and H, directly above and below the
nodes for E, and F, makes use of the E nodes close to
the edge, they must also be dealt with. This is especially
important when large values have been used for the coefficients
in equations for the other special FD equations.

Corresponding to (14), we can write equations which ex-
press the E field in the planes y = +/ — 2 above and below
the plane of metallization as follows:

Acky =Ey “47)

Ak =E_

(48)

where the subscripts + and — indicate the planes one unit cell
above and below the plane of metallization, respectively.

In order to update the H nodes above and below the plane
of the metal we require the integrals given by (49) to (55)
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from which we can express the FDTD equations for Hzi(y1)
and H(yl) as (56) and (57)

(35)

//deydzzhl Cos@//nPHTdydz

+ hy Cos 9/ Pyrdydz
— hg Sin 9//tPHNdde

~ hyg Sinﬁ//PHNdydz

//szxdy=h1 Sin&//nPHdedy
+ ho SinB//PHTdmdy

+ hj Cos@//tPHNndwdy

+ hy COSH//PHNdxdy

/Ew(yz) dz = e; Cos G/nPET dz
+ e9 Cos Q/PEwa
— €3 Sin H/tPENdx

— ey SinH/PENd:I:

/Ez(yz) dz = e1 Sin H/nPET dz
+ €9 Sin 0/PET dz
+ e3 Cos O/tPEN dz

+ e4 Cos H/PENdz

/Em(y_z) dz = 41 Cos H/nPET dz
+ eg Cos B/PET dz
—e7 Sin O/tPEN dz

— eg Sin B/PENdw

/Ez(y_z) dz = €x Sin G/RPET dz
+ eg Sin G/PET dz
+ ez Co SB/tPEN dz

+ eg Cos O/PENdz

29 py2
Cos 0%}%— / / punPyr dydz
%6 Jy

6 Jyo
29 py2
+ Cos 0 / / uPrrdydz
29 py2
— Sin 9—-—~ / / utPyy dydz

29 py2
— Sin 08h4 / / Py dydz

y2
= — Pgy d
PEy(Q) /y . EY GY

———-—1 yZP d
_PEy(G) o EY aY

29
+ Sin 0(k1 / nPer(z,yo,2) dz

26

29
- 61/ nPET((L',y2,Z) dz
26

29
+ Cos 0(193/ t(z,y0, 2) PENn(Z, Y0, 2) dz
26

(49)

(50)

(51) o
—~ €3 / t(z,y2, 2) PEn (2, y2, 2) dz)
26

29 29
+ Sin 0(192/ dzPET(x,yo,z)—eg/ dzPET(m,yz,z:))
26 z6

29
+ Cos 0(/€4/ PE‘N(xayO’z) dz
26

29
-—e4/ Pen(z,y2,2) dfz)
26

(56)

(52)

8 py2
3h1 / / unPyr dydz

+Sn0-——/ / uPrr dydz
z9 Jyo
Y2
+ Co 80——-/ / wtPyn dy dx
x9 0
yyz
+ Co! 30 / / uPHNdyd:c
«9

1

~ Pev(®)
8
+ Cos 0(k1 / nPET(-’”» Yo, z) dz
9

(3)

(54)
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z8&
—el/ nPer(x,y2,2) da:)

9

8
- Sin0<k3/ t(z, 90, 2) Pen (2, Yo, 2) dz
9

z8
—63/ t(x,yz,z)PEN(x,yz,Z)dZ')

9

8
Cos 9<k2/ dzPer(2,y0,2)
x9

8
— 62/ dzPer(z,ys,2)
x9

z8
— Sin 9<k4/ PEN(xayOVZ) dx
z9

8
- 64/ Pen(x,y2,2) dﬂ?) .

9
57

Similar equations may be written for the other six H nodes.
We may express these equations in matrix form as follows:
oh

K> =LE,+Mec

— 0t (58)

where the matrix K is made up of the coefficients of dh/dt,
the matrix L is made up of the coefficients of the F, nodes,
the matrix M are the coefficients of e in (56), etc. In general,
matrix K is of order (8 x 8), matrix L is of order (8 x 10) and
matrix M is of order (8 x 12). The vector e as 12 components
and is made up of contribution from the plane of metallization
and the planes above and below as follows:

e = (61 €2 €3 €4 ]{}1 ]{,‘2 ]{,‘3 ]{24 €5 €g €7 eg)T (59)
Substituting from (14), (34), (47), and (48), we get
oH
-7 ~EK(LE, + M Ao E) (60)

where the Ao is the 12 x 12 matrix given by (61) and the
vector E is

(Ez1(y2) Ez2(y2) E21(y2) Ez2(y2) Br1(yo) Eza (yo) E21(yo)
Eo2(y0)Ee1(y—2)Eu2(y-2)Ez1(y—2) Ea(y—2))"

A

A, = (61)

No|[ps o

oo
“ ?;IIO e

VII. CALCULATION OF OFE, /0t ABOVE AND BELOW
THE PLANE OF THE METAL

The situation for the calculation of E, is shown in Fig. 5.
Apart from the exchange of roles for the F and H field, the
calculation is similar to the procedure used for the calculation
of H,. The main difference is that the metal never cuts the
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SURFACE FOR INTEGRATION

EDGE OF METAL ARC Hxt

Fig. 5. FDTD grid for calculation of E, above and below the metal.

integration surfaces. This means that all four £’s and the
associated coefficients are always nonzero.

Corresponding to equation (14) the values of the H field
nodes are expressed as follows:

H=Agky (62)
where the matrix Ag is given by ? and H =
(Hz1(y1)Hzs(y1)

Ho(y1)H.3(y1))r -

The FDTD equation is then given by (63) or in matrix form
by (64).

aEy 1 /zll /:c4
_— Prydxdz =
Ot Pry(nis) Ja z14 By

x4
— kg Sin 0(/ Pun(z,y,21)dx

14

x4
—/ PHN(iU,y,Zn)dﬂ?)
xrl4

x4
— kg Sin 0</ t(z,y,21)Pan(z,y,21) dz

14

z4
_/ t(m,y,zn)PHN(x,y,zu)d:c)

14

x4
+ kg Cos 9(/ dl'PHT(-'L',val)
z14
x4t
- / dz PHT(-Tay’le)dx>
xl4

x4
+ kg7 Cos 9</ n(x,y,z1) dePgrn(z,y, 21)
xl4

x4
_/ ’I’L(.’Iﬁ'7 Y, 2(11) deHT(x7y7 zll))

14

z11
— kgo Cos 9(/ PHn($147y’Z) dz

1

z11
— / Pun(z4,y,2) dz)
z1

z11
- kHl Cos 6(/ t($14,y,Z)PHN(ZL‘14,y, Z) dz
21

1

z11
- / t(x4,y’Z)PHN(‘T4ayaz) dz)
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Fig. 6. Calculation of 8Ey /8t - coefficient for the H;y node.
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Fig. 7. Calculation of OE, /0t - coefficient for the H;2 node.

211
— kg Sin / dzPyr(214,9, 2)
z1

z11
—/ d2Pr(w4,9, 2)
z

z11
— kg7 Sin g / n(x14,y,2) dzPyr(214,9, 2)
z1

z11
—/ n(z4,y, 2) dzPur(24,y, 2)

1
(63)
OE,
5 = buka. (64)
and the coefficients of the FDTD equation are given by (65)
%y (Ag)"bu H. (69)

Examples of the calculated coefficients for the FDTD equa-
tions are shown in Figs. 6-Fig. 9. As before the curves for
the case 6 = 0, give the values which were used in [15].

VIII. CONCLUSION

This contribution has described a technique for efficiently
analyzing curved metal laminas of the type commonly found
in microstrip circuits and antennas, using the FDTD method.
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Fig. 8. Calculation of OE, /8t - coefficient for the H,1 node.
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Fig. 9. Calculation of OE, /Ot - coefficient for the H,2 node.

In this technique, the efficiency and simplicity of the Cartesian
mesh is retained over the whole problem space and special,
precomputed, FD equations are used in the vicinity of the
metal boundaries. This approach is computationally much
more efficient than the staircasing approximation and more
computationally efficient than the formulations which make
use of nonorthogonal coordinates. In contrast to the local
contour deformation method, the asymptotic field solutions are
incorporated into the FDTD algorithm which allows the use of
a mesh constrained only by the wavelengths of interest. The
technique is readily extendable to the cases of solid objects
which contain edges, corners or points.
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