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Abstract—The Finite Difference Time Domain (FDTD) method,
implemented in Cartesian coordinates, is well proven as an
efficient technique for the electromagnetic analysis of a wide
variety of microwave structures. The standard FDTD method
is, however, less efficient if the structure under investigation
has boundaries which are not parallel to the coordinate axes.

Techniques designed to overcome this problem such as locally or
globally deformed grids, or the use of nonorthogcmal coordinate

systems have been reported but these impose a penalty in compu-

tational effort or in flexibility. In thk contribution, an alternative

technique is described whereby the standard Cartesian grid is

maintained, and the existence of the material boundaries is

accounted for by the use of special finite difference equations
for the affected nodes. These equations take account not only of
the position of the boundaries but also of the asymptotic field
behavior in their vicinity. This technique results in a flexible,

accurate, and efficient, implementation which is applicable to a
wide range of MMIC and antenna structures.

I. INTRODUCTION

M ANY STRUCTURES such as printed antennas [1],

circuit elements [2], [3], and scatterers for which elec-
tromagnetic analysis is desired contain metal boundaries which

can not all be made parallel to a set of Cartesian or other

orthogonal coordinate axes. Whereas the standard Finite Dif-

ference time Domain (FDTD) technique is well proven as

an efficient method of analyzing structures whose bound-

aries are all parallel to the coordinate axes, the accuracy

and efficiency deteriorates if the structure under investigation

contains boundaries at arbitrary angles. Several methods have

been proposed in the literature to overcome this problem, the

simplest being to resort to the use of a very fine mesh [2].

This approach, however, is likely to yield a computationally

inefficient solution to the problem and often leads to a formu-

lation which does not converge to the correct answer no matter

how fine a mesh is used [4]. More sophisticated solutions

include the use of “deformed” grids in the neighborhood of

the material boundary. Here the Cartesian mesh is retained

over the majority of the problem space but, in the vicinity

of material boundaries, it is made to conform to them. This
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approach has been successfully used in [5] for the analysis

of scattering from a smooth surface. As an alternative, several

researchers have investigated the use of conformal grids which

use nonorthogonal coordinate systems [6] – [9]. While good

results have been obtained using this method, the computation

time is stated to be much longer (of the order of 3 times)

than the equivalent algorithm using Cartesian coordinates. In

addition there is the associated problem of generating a suit-

able nonorthogonal mesh which is, in itself, a difficult process.

A combination of Cartesian and Cylindrical coordinates has

been used for the analysis of coaxial waveguide structures

in [10], and this treatment is one of the few in which the

singular field behavior is accounted for. In this contribution,

a different approach is described in which the Cartesian grid

with its inherent efficiency and simplicity is maintained, but in

which use is made of special Finite Difference (FD) equations

in the vicinity of material boundaries. Special algorithms

for electrically small structures have been previously used

with success in the cases of slots [11], [12], and wires

[13]. The analysis of irregularly shaped planar structures has

also been addressed in a two-dimensional formulation [1 4].

Recently, we have demonstrated the incorporation of static

field solutions into the FDTD algorithm, which include the

effects of the singularities in the field distribution, in order to

analyze isolated edges [15] and narrow microstrip where the

edges are closer than or comparable to the mesh size [16]. A

major advantage of this scheme over the use of nonorthogonal

coordinate systems is that the amount of extra computer time

required is very small. Moreover, this small penalty is amply

compensated by the ability to reduce the density of the mesh

while maintaining accuracy. In addition, the generation of the

FD equations is an easily automated process which does not

introduce the difficulties associated with the generation of a

nonorthogonal mesh. This work is now extended to the use

of static solutions for the case of metal laminas with curved

boundaries such as are often found in microstrip circuits

and antennas. The approach is more flexible than the grid

deformation approach and, in addition, the field behavior in

the region of edges and corners is automatically included. Thus

the unit cell size need to be chosen only by consideration of

the wavelengths of interest and not be constrained by the size

or position of the laminas. This greatly eases the process of

mesh generation and leads to a more computationally efficient

formulation. The technique may readily be extended to solid

objects and objects with edges, corners, or points.
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Fig. 1. FDTD grid for calculation of Ez, E., and Hv.

II. DEFINITION OF THE MATERIAL BOUNDARY

In Fig. 1, we see the edge of a curved metal lamina lying in

the x–z plane which cuts the FDTD mesh. Following standard

practice, in order to calculate the new value of the Hy nodes

we need the surface integral of Hv and the line integrals of

Ez and E=. If we approximate the edge cutting the mesh by

a straight line which makes an angle 0 with the x axis we

can make use of the known asymptotic forms of the field

components tangential and normal to the edge, in order to

evaluate the integrals. Thus, we may calculate the coefficients

of the FDTD equations which will be functions of both the

position of the edge and the angle of the target to the edge.

We define a curved planar lumina by the following

functions:

1) 170rmaldist (z, z): returns length of the normal from the

point (z, z) to the edge of the lamina projected into the plane

of the metal.

2) Tangentdist (z, z): returns distance along the edge of the

intersection of the rmrmal from the point (z, z) with the lamina

with respect to a suitable origin.

3) Tiuzgentangle (z): returns the angle of the tangent to the

lamina at point x.

4) Inside (z, y, z); true if the point (x, y, z) lies on the

lamina or false otherwise.

As an example, consider a disk of infinitesimal thickness

whose centre is at coordinates (z., y., .zO) and of radius a.
The functions for this case are given by (l),

Normaldist (z, z) = (z – Zo)z + (z – ZO)2 – a

()
Tangentangle = +Sin-l ~

Inside = ((z – XO)2 + (,z – .ZO)2< a2) A (y= yo) ,

(1)

III. THE CALCULATION OF dHy/LX

IN THE PLANE OF THE METAL

Depending on the relative position of the edge of the Iamina

and the grid, a number of different cases must be identified and

dealt with. We consider all HV nodes whose associated surface

of integration intersects the metal lamina as requiring special

treatment. Two different cases within this category are then

identified, depending on whether the Hy node is on the metal

or not. These cases are shown in Fig. 1. In the latter case, the

only action which need be taken is to set the Hg node to zero.

For the former case and referring to Fig. 1, we see that there

can never be less than two (or more than four) E field nodes

outside the metal. From the magnitude of the E field at these

nodes we estimate the magnitudes of the components of the

E field normal and tangential to the metal edge.

Denoting the component of the E field tangential to the edge

as ET and the component normal to the edge and in the plane

of the metal as EN, we expand the field function as follows:

ET(~) = klTtP~T(Tt) + k2F’~T(~) (2)

EN(TL, t) = k&~N(rL) + k@~N(~) (3)

where n is the length of the normal to the edge of the metal

defined by the function Normaldist (z, z) and t is the tangential

distance along the edge referred to a suitable origin. It is noted

that the values of n and t are independent of the value of y.

The functions PEN and PET are the static E field functions

associated with a metal edge. They are given by consideration

of the Green’s function for a slab loaded waveguide and the

well used approximation to the current distribution across a

microstrip line as carried out in [17]. If we consider distances

from the edge which are electrically small, which an FDTD

cell must be, the field distribution is independent of frequency.

Under these conditions, it has been found that the asymptotic

form of the field pattern, denoted 13m in [17], is a good

approximation to the actual field distribution. Since, at this

stage, we are concerned only with the fields in the plane of

the metal, we set y to zero.

PEN = Im

(4

&

)

(4)
tJ2 + (j(n + u) + y)2

PET =

Re

(~ (

; Log
u

v+j(n+u) +/u2+(j(rt+u)+~)2 ))

(5)

where, if the edge is a part of a strip, the parameter u is
its half width. For other cases, such as a large or irregularly

shaped patch where a width is not simply defined, we let u

approach infinity yielding equations (6) and (7) which express

the well-known asymptotic field behavior near a single edge.

“N=lm(iAJ (6)

P~T = Re~X. (7)

The Cartesian components of the fields are then expressed as

.&=ETCos6–ENSin@ (8)

EZ=&Sind+17N(30s~ (9)

We can then express the magnitudes of the fields at each

node on the integration surface in terms of the normal and

tangential components as follows:

—
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to (19).

EZ2 = kln@ET(n4) COS @ + k2pET(n4) Cos e

/
Ez dz = I%ICOS 6

/
npET(n) dx + k2COS $

J
&T(n) h

– k~~&EN(?Q)sin 6– k&EN(n4)sin d (11)
– k3 Sin 6’

/
tpEN (n) dx – k4 Sin 0

J
PEN(?t) dx

(17)

E.l = k~n~pET(nl) Sin@+ r%2pET(nl) sin @

+ k~tlP~~(nl) Cos 6 + k4PEN(m) Cos 0 (12)

/
E= d.z = klSin 9

1
nPET(n) d,z + k2 Sin 6

/
pET(n) dz.

+ k3 Cos f?
/

tp~N (n) d.z + h Cos 6
I

pEN(’n) dz
EZ2 = klT@~T(n3) Sin 6’+ r%2pET(n3) sin O

+ I$3~3pEN(n3) COS 6’ + ~4pEN(n3) Cos ~ (13) (18)

where the subscripts refer tp the positions of the nodes and the

comers of the integration surface as shown by the numbers in

/.

~ dx dz = HY1 JJ f’HY(n) dx dz

brackets in Fig. 1. Y
pHy(n5)

(19)

For the nodes which are on the metal, the associated

equations degenerate to the trivial case of zero = zero.
where the function PHY (n) is the asymptotic behavior of the

Since we have four unknowns and may have as few as two
Hy field given by

nontrivial equations, we must assume some of the k‘s to be

(/

I/Z
zero. To maintain congruence with the basic FDTD algorithm PHY = Im

)

(20)
we do so as follows: if we have three nodes we set kl to zero, 4 U2 + (.i(n+u) + V)2
if we have two nodes then we set kl and ks

Equations (10)–(13) can be expressed in

follows:

where the matrix A is given by (15) below.

xv .- . .,,
to zero.

matrix form as Making use of (17)–(19) the integral form of the FDTD

equation can be expressed as (21) or in matrix form as (22)

where the vector b is made up of the coefficients of k in (21)

(14)
6’HY1 1 22 X2

And the vectors //dt $’HY(ns) .1 %1
p~~y(n) dx dz

-,. . .
k and E are given by(klkzkskA)T and (E~1E~21?.111~2)T,

respectively.

If some of the nodes lie on the metal then the corresponding

rows and columns of the matrix are removed. For example, if

three nodes on the surface of integration are outside the metal

then we have a set of linear equations which relate k2, lc3, and

lc4 to the values of the E field nodes such as those shown

in (16).

pET(n4) @ @ ‘t4pEN(n4) Sh 8 ‘&V(~4) sin 6

pET(nl) Sh 6 ~lpEN(nl) Cos d f’EN(nl) Cos 6

PET (n3) Sin 8 t31’EN (?ts) COS 6’ P~~(ns) Cos O )

“(!)= (i:)
(16)

The line and surface integrals which we need in order to

get the coefficients for the FDTD equation as shown in (17)

(/
X2

/

X2

= kz Cos !9 PET(x, v, Zl) dx – PET(x, y, Z2) dx
xl xl )

(/
X2

+ kl Cos 19 TL(Z, Y, Z1)PET(X>Y, 21) dx
xl

/

X2
— n(x, y,z2)pET(X, y, 22) dx

xl )

(!

xl

/

X2

– k4 Sin 8 PEN(s, y, z1) h – PEAT (X, y, 43) dX

xl xl )

(/

X2
— lc3 Sin 8 t(x, y, ZI)PEN(X, Y, zd dx

xl

s

X2
— ~(z, Y, Z2)pEN(x, y,Z2) dx

xl )

(/

Z2

/

Z2

– k2 Sin 6 PET(X1, Y,Z) dz – PET(x2, y, ,z) dz
%1 Z1

)

(
n2pET(n2) Cos 8 PET (n2) Cos 6 ‘~2pEN(n2) sin @ ‘PEN (n2) sin 6’

n4pET(~4) COS 8 pET(n4) Cos d ‘~4pEN(n4) sin ~ ‘pEN(n4) ‘in 6

)

((15)
nlPET(nl) Sin 6’ PET(nl) Sin 6 tlPEN(nl) Cos 6’ PEiv(nl) Cos 6’

nsPET (ns) Sin ~ PET(ns) Sin 6’ t&E~ (ns) Cos d PEN(ns) Cos 6
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(/
.Z2

– kl Sin $ n(q, y,’z)PET(zl, $/, z) Czz
Z1

/

~2
— ~(x2, v, zF?ET(z2, v, Z) d~

Z1 )

(/

%2

/

Z2

– k4 Cos 0 ~EN(Xl,y, 2’) dz – PE~(2&!, y, z) dz
21 21 )

(/

Z2

– kg Cos o t(~l, y, ~)~E~(~l, ~, Z) dz
,71

/

Z2

— t(z2, y, .z)~~~(xz, y, z) dz

)

(21)
Z1

(22)

Combining (14) and (22), we get the required equation for

updating the Hyl node value:

(23)

In general, the matrix A and the vector b are of order n where

n is the number of E field nodes on the surface of integration

and which are not on the metal surface. The elements of the

matrix (A– 1)Tb are calculated during the setting up stage so

that the time required by the main iteration algorithm is not

increased.

It is noted that, in the absence of a metal edge, the matrix

reduces to (24) which corresponds to the standard FDTD

equation

(1 111

z– )GG– G “
(24)

In Figs. 2, 3, and 4 examples are shown of the coefficients

of the special FDTD equations for a situation similar to that

shown in Fig. 1 for the case of an edge making an angle 6’

to the z axis and which passes through the point (0.5 a).

The mesh size is set to unity in each direction. The situation

for d = O, is equivalent to the case treated in [15] and the

coefficients for the nonzero nodes are equal to the “correction

factors” used there. It can be seen that the coefficients are

different when the edge is sloping. The discontinuities which

appear in Fig. 2 and Fig. 3 occur at the point where the edge

intersects the EZ2 node.

IV. THE CALCULATION OF ~Ez/~i5 AND

~~z/&-—CASE 1, Hvl OUTSIDE THE METAL

COEFFICIENT

-1 i
%....:

● a b a b m m m
-2

b a a a a ● a a a a a b a a a m m

0.01 0.05 O.ce 0.13 0.17 021 025 0.29 0.33 0.37 0.41 0.45 0.4s
0.u3 0.07 0.11 0.15 0.19 022 0.27 0.31 0.35 0.39 0.43 0.47

ALPHA
THEfA=o TFK3A=20 THE7A=44 TH~A=W TH~A=tKI
— ..- ● ***** - - -**-

Fig. 2. Calculation of 19HY /Ot - coefficient for the Ez node.

COEFFICIENT
2

/
/ ...” 1“

// --, ,..
------ * II

1.5 -__>&=------
8 ..””
$ . ..” II

-- j I .....s. 1:/..,....1 /...
......-””” I

....... 8 /“1...... I
8 -#- 00 I

0.5 I------

;

0 , I I , , , , , , , I * , , , a m , , , , , I
0.01 0.45 0.09 0.13 0.17 0.21 0.26 029 0.22 0.37 0.41 0.05 0.49

0.03 0.07 0,11 0.15 0.19 0.23 027 0.31 0.35 0.39 0.42 0.47

ALPHA
THEIA = 0 THETA= 20 THETA =40 TH=A = 60
— ---- . . . . . . . . — -

Fig. 3. Calculation of ~Hu /& - coefficient for the E.l node.

COEFFICIENT

t“
/

.’
.0.5 ---

,.. --
... ----

------
------- --

.,~
001 0.05 0 W 0.13 0.17 0.21 0.25 029 0.33 0.37 9.4* 0.45 0.49

0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.31 0.35 0.39 0.43 0,47

ALPHA
TH~A = 0 THE7A = 20 THWA = 40
— ---- . . . . . . . .

Fig. 4. Calculation of 8HV /8t - coefficient for the EZ2 node.

of the H field in the planes above and below the plane of the

metal. First, we make the following definitions:

When the metal edge is not parallel to the coordinate axes,
the FDTD equations for E= and E. are not independent and

must be taken together. A way of doing this is to consider a

cross which is centered on the Hy node as shown in Fig. 1. In

this case, we wish to use special FD equations for whichever

of the nodes Ezl EZ2EZ1 and EZ2 are not inside the metal. We

make use of (14) in order to relate the values of the vector k

for the surface under consideration to the nodes EZ.EZ2EZI

and EZ2 nodes which are outside the metal region. We also

require extra parameters hl – h&3which are defined in terms (26)

PHN = R.e

L

a

)

(25)

u2 + (j(n+ u) + Y)2

pff~ =

Im
(r (

; Log
u

y+j(n+ u)+ u2+(j(n+u)+y)2 ))
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P~Y = Re

(d

m

)

(27)

u2 + (j(n + u) + y)2

where PHN is proportional to the component of the H field

normal to the edge and PHT is proportional to the component

tangential to the edge. We then expand the H field components

normal and tangential to the edge and in the plane half a unit

cell above the plane of the metal as:

HT(n) = h~npHT(n) + hzP~T(n) (28)

HN(n, t) = FL3tPHN(n) + h4PIIN(TJ) . (29)

The Cartesian components of the H field above and below the

plane of metallization are then expressed as:

Hz(yl) = hln(yl)&T COS @ + h2pHT(yl) COS d

– h3tPHN(yl) Sin 0 – h4PHN(yl) Sin 0(30)

H.(YI) = ~ld’HT(yl) sin@+ h2pHT(!/1) sin d

+ h3tpHN (V1 ) COS ~ + h@ffN (!/1) COS e

(31)

Hz(y_l) = /t5n(y-I)pHT COS ~ + &5pHT(Y-1) COS @

— h@pHN(y_~) Sin@ – h8P~N(y_1) Sin@ (32)

Hz(y-l) = h5nP~T(y_1) Sin 0 + h6PH~(y-1) Sin ~

+&tPHN(y_l) COS d + h~pHN(y_~) COS !9 (33)

where the plane y = yl is half a unit cell above the plane of

the metallization.

Using (30)–(33), we can express the values of the H field

nodes as follows:

~=gb (34)

where H = (H~1(y1)H~2(Y1) H~1(Y1)Hz2(Y1)Hz1 (Y–1)Hz2

(Y-l) HA(Y-1)H~2(Y-l))T, his the vector made up of hl –
hs and the matrix F are the coefficients of h taken from

equations (30) to (33). The nodes HZ1, etc., are directly above

and below the nodes Ezl etc.

We now require the integrals given by (35) to (38) from

which we can express the FDTD equations for EZ and EZ

nodes

1/
E. dy dz =kl COS 8

J
npET dy d.z

+ kz Cos o
1!

PET dy d~ – k3 Sin 6

“I
tPEN dy dz – kd Sin 6’

//
PEN dy d~

(35)

.).)

“s/
tp~j@tdy dz + kA COS 6

//
PEN dy d~

(36)

/ /
– h3 Sin 6 tPHN dx – hA Sin 6’ PHN dx

((37)

/
HZ d.z = hl Sin d

I J
npHTdz + h2 Sin 6’ PHT dz

+ h3 COS 6
/ /

tpHN dz + h4 COS ~ PHN dz .

(38)

The FDTD equations for ~Ez2/& and t3EZ1/& are given by

(39) and (40). Similar equations may be written down for the
other two nodes

Cos @ Zll

//

yl

& .5
c(y, Z)npET dy dz

y–1

+Cos ~~ ’11 ‘1

H& .Cj y–1

E(Y, z’)&- dy d.z

_ sin &3 ‘ll ‘1

//Bt .5
~(y, ~)tp~N dy d.z

y–1

- Sin 6* ’11 ‘1//.Z5 y–1

. .E(Y, .Z)PEN dy d~

Hgl ‘1
= –HY36Y +

/pHY(n5) g-l
pHy dy

(/

Zll
+ Sin O hl nPHT(x, Yl, Z) dz

25

/

711
– h~ np~~(~, Y–1, ~) d~

Z5 )

(/

Zll

+ COS 6 hs t(x,YI, z) PHN(x,Y1, Z) d~
Z5

(.f
Zll

+ Sin 6’ h2 dz PHT(x, W, Z)
Z5

/

Zll

– h6 dzp~T(X,y–1,~)
Z5 )
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[1
Zll V. THE CALCULATIONS OF d~ml~t AND

+ co so h4 F’HN($, yl, z) CLZ 8Ez/8t —CASE 2 HY1 ON THE METAL
Z5\

I
211

)
The previous section makes the assumption that the Hgl

– h8 &N(z, y-l, Z) dz (39) node is outside the metal. If this is not the case, and this node
Z5 is zero, then we need to calculate the EZZ and Ezl nodes

making use of neighboring E nodes rather than the standard

Sin 8$ “ ‘1 e(z,y)nP~Tdydz
1/

FDTD technique of using the surrounding H nodes.

X12 y—1 For the calculation of Ezz, we consider the surface which
X5 yl contains the EZ2 node but does not intersect the metal. In other

+Sin8$
//

~(z, y)p~~ dy dz words, the surface containing EZZEZSEZS and EZ4. We can
Z12 y–1

write down the following equations:X5 yl

+coso~
H

C(Z, y)t&v dy dx
X12 y—1

EZ3 = kZP~T(nlo) Cos 8 – k3tloP~Ar(n10) Sin@

6%4 ‘5 ‘1

H

– k4P~N(nlII) Sin 0 (43)
+ Cos 6—

6’t
C(Z, y)p~~ dy dx

C12 y–1

= HY26y –
Hyl ‘1

/
P~Y dy

PHy(n5) ~_~

(/
X5 — k4PEN (n4) Sin 0 (44)

+ COS 6 hl np~T(X, yl, .2) dx
X12

/

X5

–hs np~T(x, y–l, z) dx

)

EZ3 = kllp~T(nl) Sin 19+ kstllP~~(nll) Gos O
X12

(/

+ k41%~(7211) cos O (45)
X5

– Sin 0 hs t(z, yl, z)p~~(z, yl, Z) dx
X12

/

X5

– h~ t(x) V–1> Z)pHN(T, y–1, z) dx
X12 )

(/
X5

+ Cos 6 h2 dx PHT(X, VI, .3)
X12

/

X5

– h~ dxp~T(x, y-1,2)
X12 )

(/

X5

– Sin 0 h4 PHN(X, yl, Z) dx
X12

/

X5

– h8

)

PHN(x) y_l, Z) dx . (40)
X12

We may express these equations in matrix form as follows:

(41)

where the matrix C is made up of the coefficients of Ok/&,

the matrix D are the coefficients of the HY nodes, the matrix

G are the coefficients of h in (39), etc. In general, matrix C’

is of order (n x n), matrix D is of order (n x n) + 1) and

matrix G is of order (n x 8) where n is the number of E field

nodes outside the metal.

Since the Hy nodes other than Hvl are farther from the edge

of the metal, we make the usual FDTD approximation that the

value of Hy varies linearly over the limits of integration.

Substituting from (14) and (34), we get t~e desired special

FDTD equation for updating the E field nodes in the vector

E as follows:

(42)

EZ4 = k2PET (rig) sin 6’+ kst9f’EN (??9) COS ~

+ k4PEN (rig) COS 0. (46)

We make use of the known values of EZ3EZ3 and EA in order

to calculate the values of kz – k4. We then use equation (44)

to calculate the value of EZZ. A similar procedure is used to

calculate the value of EZI. It is noted that, for edges parallel

to the axis, this approach reduces to that used successfully

in [16].

VI. CALCULATIONS OF dHz/8t AND 8H,/& AUOVE AND

BELOW THE PLANE OF THE METAL

Since the nodes Hz and Hz directly above and below the

nodes for E, and Ez makes use of the E nodes close to

the edge, they must also be dealt with. This is especially

important when large values have been used for the coefficients

in equations for the other special FD equations.

Corresponding to (14), we can write equations which ex-

press the E field in the planes y = +/ – 2 above and below

the plane of metallization as follows:

A+ k+ = E+ (47)——

A-k- = E-—— (48)

where the subscripts + and – indicate the planes one unit cell

above and below the plane of metallization, respectively.

In order to update the H nodes above and below the plane

of the metal we require the integrals given by (49) to (55)
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from which we can express the FDTD equations for H.l (yl)

and Hz2(yl) as (56) and (57)

J
H. dy d.z = h~ Cos 6

J
nPHT dy dz

+ h2 COS 8
1

PHT d~ d~

– h~ Sin O
1

tpffN dy d.z

– h4 Sin O
//

PHNdy d.z

/7Hz dx dy = hl Sin 9
J

nPHT dx dy

+ hz Sin O
J

P~T dx dy

J+ez Cos O PET dx

—es Sin 9
J

t&~ dx

/
- ed Sin 6 PEN dz

/ /
EZ(yZ) dz = e~ Sin 8 nPET d.z

/
+ ez Sin 8 PET d.z

J+es Cos $ &jJN dz

/
+ ed COS d PEN d.z

/ /
E=(y_z) dx = eb Cos 6 nl’ET dx

I
+ ee COS d PET dz

—
/

e? Sin 6 tpEN dx

—
I

es Sin 8 PEN dx

J /
EZ(y-2) d.z = e~ Sin 6 nPET dz

J+(?6 Sin 6 PET dz

I
+ e7 CO S6 tpEN dz

J
+ es COS $ PEN dz

J
IiT@

HYdy=—
pHY(n~) J

PHYdy (55)

Cos o%
%9

//
y2

/N@HT dy dz
%6

+ c:O~k
.29

II

y2

(49) F ~~ @ ‘PHT ‘y ‘z

~h3 z9 ?J2

- Sin Ox J/ @pHNdy dz

- Sin /$ ‘:’ “:2@Hp&jz
HZ6 ~o

1

1

y2
—_—

PEY(9) @
pEydy

1

I

y2

(50) ——
PEY(6) @

pEy dy

(/

%9

+ Sin 6 k~ nP~T(X, yo, Z) dz
Z6

/

Z9

— el nP~T(q y2, Z) dz
Z6

)

(/ %9

+ COS @ k3 t(%Yo, z)pErv(~, yo, z) dz

(51)
.z6

J

%9

- e3 t(z, Y2t ZM’EN(Z, Y2, Z) dz
X6

)

(/

%9

J

Z9

+ %n 8 kz dzpE~(Z, yo, Z)–ez dZpET(X, ~z, ::)
X6 Z6

)

(1

%9

+ Cos 6 k4 ~EN(~, yo, Z) dz
Z6

(52)

/

%9

- e4 PEN(z, y2, Z) dZ
26

)

(56)

(53)

(54)
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/

X8

— el nPET(Lz, yz, z) dz
X9 )

(/

X8

– Sin6 k3 t(~, yo, ~)P~N(X,yO, 2) dx
X9

/

X8

— e3 ~(~, Y2, ~)PEN(~, Y2, ~) d~
X9 )

(/

X8

Cos o kz d@ET ($, go , ~)
X9

/

X8

— e2 dX$’ET (Z, 3/2,2)
X9 )

(J

X8

– Sin 6’ k4 PEN(Z, yo, Z) dx
X9

/

X8

— eb
)

FEN(X, Y2, Z) dx .
X9

(57)

Similar equatims may be written for the other six H nodes.

We may express these equations in matrix form as follows:

(58)

where the matrix K is made up of the coefficients of 8h/&,

the matrix L is made up of the coefficients of the EY nodes,

the matrix M are the coefficients of e in (56), etc. In general,

matrix K is of order (8 x 8), matrix L is of order (8 x 10) and

matrix M is of order (8 x 12). The vector e as 12 components

and is made up of contribution from the plane of metallization

and the planes above and below as follows:

~ = (el e2 e3 e4 h k2 Ik3 Ik4 e5 6% e7 %)T. (59)

Substituting from (14), (34), (47), and (48), we get

~ = ~&-l(~Ev + MAo-113)—— (60)—— — ——

where the A. is the 12 x 12 matrix given by (61) and the

vector E is

(Ez1(y2)Ez2(y2) Ez1(y2)Ez2(y2)Ez1 (yo)Ez2(yo)Ez1(go)

EZ2(YO)E.Z1(Y-2 L%2(Y-2)G(Y-2)EZ2(Y-2 ))T

VII. CALCULATION OF ~EY/& ABOVE AND BELOW

THE PLANE OF THE METAL

The situation for the calculation of EY is shown in Fig. 5.

Apart from the exchange of roles for the E and H field, the

calculation is similar to the procedure used for the calculation

of Hv. The main difference is that the metal never cuts the

(11). SURFACE FOR INTEGRATION
. ............

‘xG’) (1’
\ :...........J!.........

EDGE OF M13AL ARC Hxl

Fig. 5. FDTD grid for calculation of Ev above and below the metal.

integration surfaces. This means that all four k’s and the

associated coefficients are always nonzero.

Corresponding to equation (14) the values of the H field

nodes are expressed as follows:

where the matrix

(Hz, (y,) Hz3(y,)

HZ2(y1)HZ3(y1))T .

The FDTD equation is then given by (63) or in matrix form

by (64).

8EY 1 211 Z4

IV& PmJ(n13) .1
pEy dx dz =

X14

(/

X4

– kH2 Sin ~ PHN(z’, Y, ~1) dx
X14

/

X4
— pjy~(x, y, .ZII) dx

x14 )

(/

X4

– I%H1 sin d lt(Z, y, ,ZI)PHN(X, y, Zl) dx
X14

/

X4

— ~(x, y, ZH)%IV(Z, y, 211)dx
X14 )

(/
X4

+ k~s COS@ dxp~T(x, y, ~1)
X14

/

X4
— dxp~~(x, Y, %1) dx

X14
)

(/

X4

+ kj77 COS d n(X, y, ZI) dd’f@t(Z, y, ~1)
X14

/

X4

—
‘(.7, Y> ’11) dzpm(z~ Y, ’11)

X14 )

(/

Zll

– kH2 cos @ P~n(z14, y, z) d.z
21

/

211
— PHN(x4, y, Z) dz

Z1 )

(/

Zll

– kHI cos $ t(xl~, y, .z)PHN(x14, Y, Z) d~
%1

-/

Zll
t(xd,y,z) PHN(x4, y, z) dz

Z1 )
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F-------------------
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0.3 -

0.6
* , , a * 1 , , a a , I , , , , , , I a , I , , a

O.01 0.05 0.03 O.*3 0.17 0.21 023 0.29 0s3 0.37 0.41 0.45 0.49
0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.3i 0.35 0.29 0.4S 0.47

ALPHA
THE7A = 0 THE7A = 20 THE7A = 40 THETA= SO TH_A = SO
—. . . . . . . . . . . . - - -.. -..

Fig. 6. Calculation of i3Ev /8t - coefficient for the Hc I node.

COEFFICIENT

4.6
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.1 -.. -.. -.. -..-.. -..-.. -. —.. -.. -.. -. —..-..-.
----------------

----- -“
-,2 --- ---- ---- ---

-i”~
O.01 0.03 0.03 0.43 0.17 021 0.25 029 0.33 0.37 0.44 0.4s O.O3

0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.31 0.s5 0.% 0.43 0.47

ALPHA
THE7A = O TH~A = 20 THE7A = 00 THE7A = 90 T14E7A = 30
— ---- . . . . . . . . - — -.. -..

Fig. 7. Calculation of L3EV /& - coefficient for the HX2 node.

(J

%11

– kHLI %n 0 d2d’HT(~14, y, Z)
%1

/

Zll

— dzPT(x4, y, 2’)
Z1 )

(/
%11

– ~H7 Sin 0 n(X14, y, Z) d@HT(XIA, y, 2)
Z1

/

211
— n(Z4, y, 2) dZpHT(Z4, y, Z)

ZI )
(63)

=&&kH.
at ‘—

(64)

and the coefficients of the FDTD equation are given by (65)

aEY – (A~–l)TbH ~ .

at = —
(65)

Examples of the calculated coefficients for the FDTD equa-

tions are shown in Figs. 6–Fig. 9. As before the curves for
the case O = O, give the values which were used in [15].

VIII. CONCLUSION

This contribution has described a technique for efficiently

analyzing curved metal laminas of the type commonly found

in microstrip circuits and antennas, using the FDTD method.

COEFFICIENT

-0.6-

.0.3-

-1
----- -------- ----
_a.___=. a -- =--- ---,___ ___. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-12

1

. . .
. . . . . ...-”..

. . . . . .
. . . . . . . . .

-1.4

0.01 0.05 0.03 0.13 0.17 0.21 0.25 0.29 0.33 0.37 0.41 OAS 0.49
O.W 0.07 0.11 0.i5 0.19 023 027 0.3’l 0.35 0.39 0.43 0.47

ALPHA
TH~A = 0 TH27A = 20 THE7A = 40 THE7A = S0 THE7A = 30
—. --- . . . . . . . . - - -..-..

Fig. 8. Calculation of 8EV /i3t - coefficient for the IY,l node.

COEFFICIENT

*,.7 ......................................................
............ ...............

1.3

. . . . . . . . . . . . . . . . . . . . . . . . . . . ..-. -.-.-.-.-.-.-.e.s..e..- --------- _
-------- ------

*

0.8

0.6

* I I a , t I I t I t I I 1 I , , I I I I I I t I

O.01 0.03 0.09 0.13 0.i7 0.21 0.25 0.39 0.33 0.37 0.41 0.45 0A9

0.03 0.07 0.11 0.15 0.1S 0.23 0.S7 0.31 0.35 0.33 0.43 0.47

ALPHA
THE7A = 0 THE7A = 20 THETA= 40 TH~A = 60 THE7A = S0
—. . . . . . . . . . . . - - -..-..

Fig. 9. Calculation of OEY /6V - coefficient for the H,2 node.

In this technique, the efficiency and simplicity of the Cartesian

mesh is retained over the whole problem space and special,

precomputed, FD equations are used in the vicinity of the

metal boundaries. This approach is computationally much

more efficient than the staircasing approximation and more

computationally efficient than the formulations which make

use of nonorthogonal coordinates. In contrast to the lc~cal

contour deformation method, the asymptotic field solutions are

incorporated into the FDTD algorithm which allows the use of

a mesh constrained only by the wavelengths of interest. The

technique is readily extendable to the cases of solid objects

which contain edges, corners or points.
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